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Summa~ 

An exact solution is obtained for the problem of the diffraction of a cyhndrical sound wave by an absorbent 
semi-infinite plane. The two faces of the half-plane have different impedance boundary conditions. The problem 
which is solved is a mathematical model for a noise barrier whose surface is treated with two different 
acoustically absorbent materials. 

The usual Wiener-Hopf method (which is the standard technique for solving half-plane problems) has to be 
modified to give a solution to the present mixed boundary value problem. 

1. Introduction 

Unwanted noise from motorways, railways and airports can be shielded by a barrier which 
intercepts the line-of-sight from the noise source to a receiver. The acoustic field in the 
shadow region of a barrier, when transmission through the barrier is negligible, is due to 
the diffraction at the edge alone. The design and performance of noise barriers, particu- 
larly for the reduction of traffic noise, has received considerable attention in recent years; 
see the review article by Kurze [1]. Noise shielding by barriers (aircraft wings) also has 
important applications in aircraft noise reduction; see the review article by Jones [2]. 

An effective way of reducing the noise level in the shadow region of a barrier is to line 
one or both faces of the barrier with absorbent material. The rationale for such a noise 
barrier design is given in Rawlins [3]. The presence of an acoustically absorbing lining on 
a surface is described by an impedance relationship between the acoustic pressure (p)  and 
the normal acoustic velocity fluctuation on the lining surface (Morse and Ingard [4]). This 
gives rise to a boundary condition on the absorbent lining of the form 

Op _ i k f l p ,  Re fl > O, ( * ) On 

where the sound wave has time harmonic variation e -iwt, and k = o~/c; c is the velocity of 
sound, n the normal pointing into the lining, and fl the complex specific admittance of the 
acoustic lining. An acoustically hard (or perfectly reflecting) surface has a vanishing 
admittance, i.e. 1131 -- '  0, and an acoustically soft surface (pressure fluctuation vanishing on 
surface) is given by 1131 ~ ~ .  

If the wavelength of the sound is much smaller than the length scale associated with the 
barrier, the diffraction process is governed only by the local conditions at the edge. Hence 
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a rigid noise barrier with absorbent material on one face can be modelled by a 
semi-infinite plane, one face of which is absorbent and the other rigid. The solution of this 
problem for the special case Ifll ~ ov (i.e. the absorbent surface boundary condition (*) 
replaced by a soft boundary condition) was given by Rawlins [3]. This problem corre- 
sponds to the physical situation of diffraction by a half-plane, one face of which is 
acoustically soft and the other face being rigid. A modification of the standard Wiener- 
Hopf technique was used to obtain a solution of the problem. Later, Williams [5] obtained 
the same solution by a much simpler approach. However, the approach of [3] can be 
adapted to deal with the more complicated situation where fl is finite. A similar approach 
to that used in Rawlins [3] and here, was followed by Hurd and PrzeZdziecki [6,7] in their 
solution of the problem of plane'wave diffraction by a half-plane with different face 
impedances. However, it is shown that the present approach is more straightforward in 
that it separates the function-theoretic Wiener-Hopf factorisation of a matrix, from the 
boundary value problem analysis. This is the traditional approach for Wiener-Hopf 
problems. We shall show that the usual Jones' method [8] can be used to set up a system 
of Wiener-Hopf equations. These equations can be uncoupled if a matrix function can be 
factorised. It is shown that this is indeed the case, the factorisation being reduced to the 
solution of two standard Hilbert problems. 

In Section 2 a boundary value problem is formulated for the diffraction of a cylindrical 
sound wave by a half-plane with different face impedances. To ensure a unique solution 
an "edge condition" (Jones [9]) is imposed. This edge condition is the usual one associated 
with diffraction theory (i.e. that the sound energy is bounded in a finite region around the 
edge of the half-plane). 

In Section 3 a solution is obtained for the boundary value problem set up in Section 2. 
The method used is the standard Jones' technique of representing the acoustic potential 
function as a Fourier transform. This leads to a coupled system of Wiener-Hopf 
equations. To uncouple the equations, and therefore to be able to apply the usual 
Wiener-Hopf argument, a matrix function has to be factorised. This is carried out in 
Appendix A with the help of results given in Appendix B. In Section 4 the solution, which 
is in terms of double integrals, is asymptotically evaluated for source and receiver 
positions well removed from the edge of the half-plane. Explicit expressions are obtained 
for the diffracted field and the geometrical acoustic field. 

2. Formulation of the boundary value problem 

We shall consider small amplitude sound waves diffracted by a half-plane. The half-plane 
is assumed to occupy x ~< 0, y = 0, and to be infinitely thin and rigid with its surface 
treated with acoustically absorbent material (see Fig. 1). The upper surface (x ~< 0, y = 0 ÷) 
will therefore require the satisfaction of the absorbing boundary condition p - Zlu,, = O, 
while on the lower surface (x < 0, y = 0-) the boundary condition p + Z2u,, = 0 applies. 
Here p is the acoustic pressure and u n is the normal component of the perturbation 
velocity at a point on the surface of the half-plane. The acoustic impedance of the upper 
(lower) surface is ZI(Z2). W e  shall restrict our consideration to a harmonic time 
dependence, with the time factor e -"~t being suppressed throughout. 

The perturbation velocity u of the irrotational sound waves can be expressed in terms 
of the velocity potential X(X, y )  by u = grad X. The resulting pressure in the sound field is 
given by p = itopoX(X, y )  where P0 is the density of the initially undisturbed ambient 
medium. 
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The primary source is taken to be a line source, parallel to the half-plane edge, at a 
position (x 0, Y0), Y0 > 0. The problem we are considering becomes one of solving the wave 
equation 

a~---xx + a :-~-x + k~x = a (x  - Xo)a(y - y o ) ,  (1) 3x 2 8y2 

in all space excluding the half-plane; here k = ~o/c and c is the speed of sound in the 
initially undisturbed medium. The effect of the half-plane is described by the boundary 
conditions 

x < o, (2) 

where fll = PoC/Zl, f12 = Poc/Z2 are the specific admittances of the absorbent surfaces, 
and for acoustic absorption Re(ill)  > 0, Re(fl2) > 0, see Morse and Ingard [4]. 

In order that the solution to the boundary value problem (1-3) be unique, we shall also 
require that the field be continuous and that the edge shall not radiate any energy; also 
that the field should be radiating outwards at infinity, see Jones [9]. The condition that the 
edge does not behave like a source, and therefore radiate energy, requires that the field 
near the edge behave like 

(4) X = 0 (1 ) ,  grad X = O(r-1/2), 

a s r =  (x2+y2)'/2-*O, I/3,1 < oo,  1/321 < oo. 

Y 

SOURCE / 
/ 

(xo,yo) ~ ' ~ ; ~ [ e  1 f / 

(x0,-y0) ~ 2  \\ 

IMAGE 

Figure 1. Geometry of the diffraction problem. 

e = ~ - e  o 

(x,y) 

0 =--TT + e 0 



40 

The behaviour of the edge field as given in the above expression is different to that 
given in Rawlins [3] where 1/311--' oo,/32 = 0. We have here excluded the latter case and 
also 1/321 ~ oo, /31--0 .  The reason being that the solution obtained is not uniformly 
con t i nuous  in the l imit  1/311--> ~ o r  1/321--, ~ .  

3. Solution of the boundary value problem 

We shall assume, for analytical convenience, that k = k r + ik i, k r > 0, k i >/0. At the end of 
the analysis we can set ki = 0. 

Define ;~(a, y), where a is a complex variable, by 

(5) 

The radiation condition requires that the phase dependence of X(X,  y), as Ixl ~ ~ ,  behave 
like e -k,lxl. In view of this it can be seen that ~(a,  y)  will exist for -k~ < Im(a )<  k i. 
Then it follows from (1) that ~(a,  y)  satisfies 

d2-"~-X + K29( = e'~'x°8(Y --'Yo), Yo > 0, (6) 
d y  2 

where x = (k 2 - -  a 2 )  1/2  is defined to be that branch for which K = k when a = 0. Then 
will always have a positive imaginary part in the region [Im(a) l < kv A solution of (6) for 
a in the strip [Im(a)[ < ki, which decays as [y[--. ~ ,  is given by 

Let 

~ ( a,  y )  = A ( a ) exp[iry]  + exp[i { a x  o + Kl y -Y0[}]/(2ix) ,  

= B ( a )  e x p [ - i x y ] ,  

(y  > 0), (7) 

(y  < 0). (8) 

• = f°  o ÷) -x (x ,  o-)] e'°Xdx, (9) 

8X 

Then ~ 2 ( a )  are analytic for I m ( a ) < k i ,  and ~tq+2(a) are analytic for I m ( a ) > - k  i. 
Throughout this work a superscript (or subscript) plus or minus attached to any function 
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will denote that the function is analytic in Im(a) > - k i or Im(a) < ki, respectively. Using 
the expressions (2), (3), (5), (7) and (8) in the expressions (9) to (12) gives 

• ; ( a )  = A ( a )  - B ( a )  + exp[i { ax o + xy  o }]/(2ix) ,  (13) 

• ~ ( a )  = i K (A(a )  + B(a))  - e x p [ i { a x  o + xy o }]/2,  (14) 

' ~ t ' ? ( a ) = A ( o t ) ( i x + i k f l l ) + ( - i x + i k f l l ) e x p [ i { a X o + X Y o } ] / ( 2 i x ) ,  (15) 

~ ;  ( ot) = - B(  a)(  ix + ikt~z). (16) 

Eliminating A(a)  and B(a)  from (13) to (16) gives the matrix Wiener-Hopf equation 

• +(a) = K(a)~_  (a) + D(a),  (17) 

where 

x , ,  1 / i ( . +  k¢1) (~+ k ~ l ) / . )  (19) 
t~) -- ~ [ i ( .  + k¢2) - ( .  + ~ 2 ) / .  ' 

D ( a ) =  ( k B ~ - " ) e x p [ i ( a x ° + K Y ° } ] / ( 2 " ) )  (20) 
- (kB2 + , )  exp[i { ax o + "Yo } ] / ( 2 , )  " 

The expression (17) constitutes a coupled system of Wiener-Hopf equations. The standard 
Wiener-Hopf technique can only be applied if the system (17-) can be uncoupled into two 
separate Wiener-Hopf equations. This requires that the matrix function K(a)  can be 
factorized. This is not a trivial operation and it is not always obvious that one can in fact 
factorise the matrix. In the present problem it is shown, in Appendix A, that the matrix 
K(a)  can be factorised such that 

X(a)  = V(a) t - - l (~) ,  (21) 

where 

u21(~) u~(~) ' t~,(~) t2~(~) " 

The elements of U(~) are given, see Appendix A, by 

(23) 
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u:~(°): [(w +; + ~ ) ( ~ +  ~ )  exp ½ Q(u)du, (24) 

u1:(0/) = (k + 0/)1/2u.(0/), (25) 

U22 (0/) = -- ( k -{- 0/)1/2 u21 (0/) ,  (26) 

where 

Q ( u )  = - -  
1 c ° s l ( - ~ 0 ~ )  cos1(1_¢i~) 

-~ + 

+ 
cos 1(_ ~ _ ~ )  cos , ( 1 ~ )  
2 ~ ( u + k ~ t  ~ ( u - ~  a - g ~  / 

k#, cos- 1(u//.) a 

2~ ¢ ~ _ u  ~- u+~(~_B~ 
_ _ +  

u -- k 1 -~/i-~12 

kfl: cos- a (u /k)  1 

2~ ~/-~-u~ . + k i l - ~  
1 + 

u -  k 1 -~-~22 
(27) 

and 

B1, :(_+)= 1 + ~ -  fl?.2. (28) 

The elements of U(0/): uij, i , j  = 1, 2, are analytic in Im(0/) > - k  r The elements of L ( a )  
are analytic in Im(0/) < k~ and are given in terms of the expressions (23) and (24) by 

/11(O~) = Ull (0/) -~ U21 (0/) (29)  
i ( r  + ki l l )  i(K + kfl2 ) ' 

/12(O/) = U11(0/)( k ..{_ 0/)1/2 U21(0/)( k ..1_ 0/)1/2 
i ( x  + kill ) i ( x  + kfla ) ' (30) 

u1,(0/), u,,(0/). (31) 

u.(0/)~(k + 0/)'/~ u2,(0/)~(k + .)1/2 
t2,(0/) = ~ + k# l  + ~ + kB2 (32) 



Having factorised K ( a )  explicitly, we substitute (21) into (17) giving 

u = + v-'(.)o(.), 
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(33) 

since U(a)  and L (a)  are non-singular matrices. By carrying out the matrix multiplication 
in Eqn. (33) we obtain the two equations 

(Det u)-l(u22~Iq + - u12% +) = (Det L)-'(122qb{ - l lz~- ) + G1, (34) 

(Det U ) - a ( -  u21'~t'a + + Ullff'z +) = (Det L ) - 1 ( -  lza~ - + 111@2) + G2, (35) 

where 

Gl ( a ) = (Det U) - l{Uzz(a ) (k f l l  - x) + Ul2( a)(  kfl 2 + x)) 

× exp[i { ax o + xYo }] / (2x ) ,  (36) 

G2(ot ) = (Det U) -1{  _ u21 ( a ) ( k f l  I _ x) - ull(a)(kf12 + h:)} 

× exp[i { ax o + ~Yo }] / (2x) ,  (37) 

Det U( a) = uu(  a)u22( a ) - U12(0~)/./21(0~), 

Det L (a)  = l , , (a)122(a ) - 112( a)121( a ). 

By means of Cauchy's integral theorem, see Noble [10], we can let 

G , ( a )  = G ? ( a )  + G ; ( a ) ,  G2(a ) = G ; ( a )  + G ; ( a ) ,  (38) 

where 

1 f~o~i , ,  G , ( t )  d t ,  (39) 
G'-+(° ' )  = - _ , ,  t - 7  

1 f Ti,, Gz(t  ) 
G ? ( a )  = + ~ - ~ ; i , ,  -t-Z_g dt ,  0 < % < k i. (40) 

The representations (39) and (40) with the upper (lower) sign are valid when I ra (a )>  
- z l ( I m ( a )  < rl) and define G~z(Ot)(G~2(a)) as analytic functions in Im(a) > -~' l(Im(a) 
< ~5)- We note that in the limiting case of ~'1 = k i =  0 the above integrands have an 
integrable singularity at t = - k. This follows from the results (A47) of Appendix A, which 
show that Gl(t  ) = O(1), G2(t ) = O((k  + t)-a/2) .  Standard asymptotics also shows that 

G -+ (41) 1 , 2 ( ( X )  = O ( . - 1 ) ,  as lal ~ oo, 

in their regions of regularity. 
We may now write (34) and (35), by means of (38), in the standard Wiener-Hopf 

forms: 

(Det U ) - a ( u 2 2 ~  - - Ul2~It;) - -  G~- = ( O e t  L ) - 1 ( 1 2 2 ~ 1  - 112~-) + Gi-, (42) 

(Det V ) - ~ ( -  u21~Xtl + "t- U l l X I r ; )  - -  a ~ -  = (Det L ) - ' ( - 1 2 , ~ b ;  + 11102) + G ; .  (43) 
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In order to be able to apply the normal Wiener-Hopf argument to (42) and (43) we shall 
require some knowledge of the behaviour of the functions as ]a I -) oo. 

The edge condition (4) requires that the transformed functions must behave like 

• ; ( . )  = o ( . - ' ) ,  

%+( . )  = o ( . - ' / ' ) ,  

( b ; ( a ) = O ( a  -'/2) for Im (a )<k  i, lal--*oo; 

I;[I;(R) = O(o/-1/2) for Im(a) > -k i ,  loll---) 00. 

(44) 

By using the above results in conjunction with (41) and the asymptotic growth estimates 
(A45) and (A46) of Appendix A we find that: 
For Im(a)> - k  i as lal  ~ oo, 

(Det U)-lu22~Iq + = O(a- l /2 ) ,  

G r ( a ) = O ( a - ' ) ;  

(Det u)-lUalXI/1 + = O(o t - l ) ,  

(Det u)-l#12xlt; = O(0t--l/2), 

G ; ( ~ ) = O ( ~ - ' ) ,  

(Det u)--lUllXIt; = 0(0/-1) .  

(45) 

For Im(a) < k i as lal ---' ~ ,  

(Oet L)-11220; = O(1), 

a l ( o / ) =  O(o/-1) ,  

(Det L )-'12,4~1 = 0 (a -1 /2 ) ,  

(Det L ) - 'l,2(b 2 = O ( a -  ,/a) 

G; ( ,~) = 0 (  ,~- ' ), 

(Det L )- ' ln(b 2 = O ( a - ' ) .  

(46) 

The results (45) and (46) show that the left-hand side and right-hand side of the equation 
(43) are analytic and asymptotic to o(1) as lot I--) o0 in Ira(a)> - k i  and Im(a)< ki, 
respectively. Similarly the left-hand side of Eqn. (42) is analytic and asymptotic to o(1) in 
Im(a) > - k  i as ]al --) oo, whereas the right-hand side is analytic and asymptotic to O(1) as 
)al-+ oo in Im(a)<  k~. Thus by Liouville's theorem the analytic function which is a 
continuation of both sides of these equations in the entire a-plane is a constant; the 
constant being zero. Hence 

u - l q I + = G + = ( G ~ )  = ~ q I + f U G + G ;  

or 

• Iq  = G~u.  + G;#,2, 

By substituting (47) and (48) into (15) and (16) we have 

A(a)  = - i ( •  + k f l , ) -] (  G~un + G~u12 ) + ( K -  kfll)(K + kill) -1 

× exp[i ( ax o + xy o }]/(2ix),  

B(a)  = i(g + kfl2)-a(G~u=, + G;u=2 ), 

(47) 

(48) 

(49) 
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which on substituting into (7) and (8) and using the inverse Fourier transform of (5) gives 

1 foo+i~ [ G~Ull -Jr- GfUl2 (K - k/31) e ,{~x°+~y°} } e_i.~+i~Yda 
X(x'Y)=-27~J_~+,,~ i(K+k/3,) + -(-~+k/3,)2i~ 

2 
(y  > 0), (50) 

1 (oo+i, I G:u21 +G;u22}e_i x_i,Yda ' 
k&) ( y  < 0), (51) 

- k i <  - r  I < ' r  < k i ,  

as the solution to the original boundary value problem. As a check, if we allow/31 =/32 = 0 
the expressions (50) and (51) reduce to the known result (see Noble [10, p. 87]) for the 
diffraction of a line source field by a rigid half-plane. 

The physical interpretation of the solution given by (50) and (51) is made more 
apparent by asymptotically evaluating the integrals for the receiver point (x, y)  such that 
k(x 2 +y2)1/2 ___~ 00. This corresponds to the observer at (x, y)  being in the far field. In 
practice if the line source at (xo, Yo) and the receiver at (x,y)  are more than two 
wavelengths from the edge (0, 0) of the barrier then to a good approximation we can 
assume that we are in the far field, and the incident field is a plane wave. 

4. Asymptotic expressions for the far field 

The asymptotic methods though straightforward are tedious. We shall merely outline the 
calculations, more details of the techniques can be found in Noble [10]. Consider first 
G~.2(a ) as given by (39) and (40); let k be real, then ,q = 0 and the integration path along 
the real axis is indented below the point t = a. Substitute Xo = ro cos 80, Yo = ro sin 90, 
0 < 0 o < ~r; t = k cos ~, 0 < Re ~ < rr, then the integrand has a saddle point at ~ = 00. The 
integration path is now deformed into the steepest-descent path S(Oo) described by 
Re[cos(~ - Oo) ] = 1, Im[cos(~ - 80) ] > 0. In the deformation the pole at k cos ~ = a is 
intercepted if a < k cos O o. The integral along S(Oo) is asymptotically expanded as 
kr o ~ oo by means of the saddle point method. 

Thus it is found that 

1 (fl, - sin Oo)uz2(k cos 00) + u12(k cos 00)(/32 + sin 80) 

G?(a) - 4~ri Det U(k cos 00)(cos O o - a/k)  

~ 27r eikro_i~r/4 
× G 

(k/3, -  )ua(a) + ( k &  + 
+ H[k cos 0 o - a] e i~x°+~y°), (52) 

2~ Det U(a) 
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- 1  (/3a - sin Oo)u2,(k cos %) +(/32 + sin Oo)u,l(k cos %) 
G~(a) 4~ri Det U(k cos 0o)(COS 0 o -  a/k) 

× 2~k.__~o eikro- iw/4 

(k/31-x)u2'(a)+(kf12+x)u"(a)U[k Oo-a ] e i(~xo+*y°), (53) 
- 2K Det U(a) cos 

where H[x] = 1 for x > 0, H[x] = 0 for x < 0 (Heaviside step function); the result is valid 
for kr o ~ oo, - k  < a < k; the second terms arise from the residue contributions. 

The results (52) and (53) for G~,2(a), when inserted into (50) and (51), give 

X (x, y) = XD(x, y) + Xa~(x, y), (54) 

where 

~ 2~r e ikro-iw/4 1 

XD(x'Y) = kr o 4~ri 2~r 

x sin O0)u22(k cos O0) ual(a ) + (/32 --I- sin O0) Ul2(k COS 00) Ull(Ot) 
- - ~ + i 7  

- ( f l a  - sin Oo)uzl(k cos Oo)uu(a ) -(132 + sin Oo)un(kcos Oo)UlE(a)] 

×[Oet  U(kcosOo)(cosOo-a/k)i(x+k/3,)]-' e-i'~x+i~Yda, ( y > 0 ) ,  (55) 

/ 2¢t e ikr°-i~r/n 1 

V kr o 4~ri 2~r 

t ' o O  + i ' r .  

× J~+i, l(fl ,  - sin O0)un( k cos O0)u2,(a ) + (f12 + sin O0)uu( k cos Oo)u2,(a ) 

- ( i l l  - sin Oo)uEl(k cos Oo)uz2(a ) -(/32 + sin Oo)uH(k cos O0)u22(a)] 

×[Det  U(kcosOo)(cosOo-a/k)(-i)(r+kfl2)] -~ e-~-i'Yda, ( y < 0 ) ;  

(56) 

XoAIx, 2) 

+l f°°+'" [kfl~-"){n[kcosOo_,,,]_l}e-'"'x-x°~+'"'Y÷"°' 
2~r _oo+iz~ kfll'-+ t¢ 2i~ da, 

(y > 0), (57) 

] r ~ + i ' t  . e - ia(x-xo)+i~(yo-y)  
= ~ ]  ~+ , f l tk  cos 0o- ~] 2i~ d~, (y < 0). (58) 
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The integrals in the expressions (55) and (56) can be asymptotically expanded for 
kr ~ ~ by the saddle point method following the usual steps: substitute x = r cos 0, 
y = r sin 0, -~r < 0 < ~r; a = k cos ~, 0 < Re ~ < rr, then the integrand has a saddle point 
at ~ = ~r - 0 and ~ - ~r + 0, respectively; deform the path of integration into S(~r - 0) and 
SOr + 0), respectively; apply the saddle point formula. This gives 

1 i 2 e ikr 
X o ( r cos 0, r sin 0 ) - ~-~ ~ e ikr°- i=/4D ( O, 0 o ) fr (59) 

where 

D(O, Co) 

[1 f - k  cos u)du]  
e,~J4 exp[~Lco~0 ~e( 

2 27~k- (cos 0 + cos 0o) cos(0o/2 ) 

,sin0, (,sin0,- 2)'J2 
x {(sin 0 + fll)(sin 0 - f12)} '/2 I sin 01 + fl, 

(v~-sin 0 /2  + ~ / B ~ j - ) ( q ~ s i n  0 /2  + ~ C - j - ) ] , / 2  

(¢2-sin 0 /2  + ~ - + y ) ( ¢ ~ - s i n  0 /2  + ~ )  ] 

sin Oo)( q + cos- ) 

(q~-cos 0o/2 + ~ ) ( ¢ ~ - c o s  0o/2 + ~ Z ) )  1'/2 

(¢~cos Oo/~ + ~ ) ( ~ c o s  Oo/~ + ~0~-  ) l 

+ ( f l / +  sin 0o)(COS~ - sin O ) 

[ (v~c°sOo/2 + ~)(v/2cosOo/2 + ~ )  J '/2) 
(,acos Oo/~ + ~ ) ( ¢ ~ o s  Oo/~ + ~ )  ' 

(60) 

k r ~ ,  kro--*~ , 0 < 0 o < ~ r  , -~r < 0  <~r, cos 0 + cos 0o 4: 0. 

In a similar fashion the integrals appearing in the expressions (57) and (58) can be 
asymptotically evaluated by the saddle point method. In the integrand of the expression 
(57) l e t x - x  o = R  2 c o s 0 2 , y + y o = R 2 s i n 0 2  , 0<02<~r ,  a = k c o s ~ ,  0 < R e ~ < ~ r ;  and 
in the expression (58) let x - x o = R 1 cos 01, y - Yo = - R1 sin 01, 0 < 01 < ~r, a = k cos ~, 
0 < Re ~ < ~r (see Fig. 1). The saddle point of (57) and (58) is then given by ~ = ~r - 02 and 
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--- ~r - 01, respectively. Deforming the path of integration into S(~r - 02) and S(~r - 01), 
respectively, and applying the saddle point formula gives 

1 ~ 2--~ei*R,-i~/4+ 1 ~ 2  ei*R2-i,~/4(fll-sin02 ) 
XcA( r c°s O' r sin O ) - -~t ,rk R 1 -~z ill-+ sin O2 

× { H [ c o s O o + C O S 0 2 ] - I  }, 0 < 0 < * r ,  k R 2 ~ ;  

- 1 ~  eikR'-i'/4H[c°so° - ~ r < O < 0 ,  kR, ~ oo. 

By using the fact that 

H[cos  00 + cos 02]- 1 = - H[ O + 0 o -  ~'], 

H[cos  0 o + cos 01] = H [ O -  O o + ~ r ] H [ - O ]  

for 0 < 01, 2 < ~r, 0 < 00 < ~r, we can rewrite the above expression for XcA as 

1 ~-"-~ eikR_i~r/4H[O XcA(r c°s 0' r sin 0 ) -  ~ ~ - 0 0 +  ~'] 

1 ~ R 2  ( i l l - s i n 0 2 )  
4i eikR:-i"/4 fll -~sin 02 H[O + 00 - ,r], (61) 

- , r  < 0 < , r ,  kRl--*oo, kR2~oo.  

If the expressions (59) and (61) are substituted into (54) we have finally the expression 
for the far field 

x( r cos 0, r sin 0) = -2~tHCol)( kRl)H[ O - 00 + ,r] 

1 H 0 ) t k R 2 )  ( s i n 0 2 - f l l ) H [ 0 + 0 0 _ ~ r  ] 
+ 4i o ~ sinO~+fll  

eikr 
+ H(°l)(kr°)D(8' 00) v~ ' (62) 

kr~oo,  kro---~oo , -~r < 0 <~r, O<Oo<~r , 0 ~ ___ (~r-- 0o) , 

where D(O, 0o) is given by (60) and we have replaced the asymptotic term (2/~rz) l/z exp[iz 
- i~r/4] by the Hankel function H0°)(z); it is understood that its asymptotic form is used 
in (62). 

The physical interpretation of the result (62) in conjunction with Fig. 1 is now obvious. 
The first term represents the incident cylindrical wave due to a line source at (x o, Y0). The 
second term is the wave reflected from the upper impedance face of the half-plane. This 
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reflected wave appears to radiate from an image line source at (Xo, -Y0). The reflection 
coefficient (sin 0 2 - - f l 0 / ( s i n  02 + ill) occurring in the second term, is the same as for 
reflection of a plane wave incident at an angle ~r - 02 on an infinite absorbent plane. The 
first two terms of the expression (62) represent the geometrical acoustic field and they will 
not exist everywhere. The regions where they are present are governed by the Heaviside 
step functions which multiply the Hankel functions. Physically these regions correspond to 
the shadow and insonified regions. On the boundary between these regions the arguments 
of the Heaviside step functions vanish. The last term of the expression (62) represents the 
diffracted field, which is a cylindrical wave which appears to radiate from the edge of the 
half plane, to all points in space. 
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Appendix A 

In this appendix we shall factorise the matrix If(a) given by the expression (19) of the 
main text. In order to simplify the formulae of this appendix we shall assume k is real, i.e. 
k, = 0. There is no loss of generality in this assumption. The end results are analytic 
functions of k which will be valid for k~ >1 0 by analytic continuation. We shall reduce the 
problem of factorisation to the solution of a set of Hilbert problems. These Hilbert 
problems are then solved by Muskhelishvili's theory [11]. Some asymptotic growth 
estimates conclude this appendix. 

Reduction of the matrix factorisation problem to Hilbert problems 

We assume a factorisation of the form 

~k~(O/) = U ( o c ) L - l ( o ¢ ) ,  (A1) 

exists where 

IH(a) l'2(a) ) (A2) 
L(a)= 6,(a) 6:(a) ' 

(u,,(.) 
l u21(a) Ua2(a) . (A3) 

The dements l~g, ( i , j - - 1 ,  2) of L(a) are assumed to be analytic in the cut a-plane 
larg(k - a)l < ft. The elements U~y(i,j - 1, 2) of U(a) are assumed to be analytic in the cut 
a-plane larg(k + a)l < ~r. This means that L(a) is analytic everywhere except along the 
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branch cut k ~< a < oo, Ira(a) = 0; and U(a) 
branch cut - ~ < a ~< - k ,  Im(a) = 0. 

We note from the expression (19), that 

is analytic everywhere except along the 

Det K(a) = - i ( x  + kill )(x + kfl2)/(2x ) 4= O, (A4) 

in the cut a-plane, since -~ r /2  < arg(x)< ~r/2 and Re(k/3j)>~ 0, Re(kfl2)>~ 0. Hence 
K(a), and consequently U(a) and L-l (a)  are non-singular matrices in the cut plane. We 
now analytically evaluate the left hand side, and consequently the right-hand side of (A1) 
about the branch cut at a = - k .  This gives 

(A5) 

where in this appendix only we use the notation F+(~) = F(I~I e i~) to denote values of F 
on the upper side of the cut, and F-(~)  = F(l~l e -i'~) to denote values of F on the lower 
side of the cut. We remark that in (A5) L-1(6)  does not jump in value on crossing this cut 
because it is analytic at a = ~, - ~ < ~ ~ - k .  Eliminating L- I (~ )  in the expression (AS) 
gives 

(A6) 

We note that on the cut q-plane 

r= +_i(~2-k2) 1/2= +i [g [  for a = - ~ e  -+'~, - o 0 < ~ < - k ,  (AV) 

and therefore 

K+(~ ) = ½ ( (-Ix[ + ikfla) - ( -Ix{ + ikfl, )/[xl / 

(-[x[+ ikfl2) (-[x[+ ikfl2)/lx[]' 
(AS) 

[ K _ , ( ~ ) ] -  = (IKI + ikB,) -~ (Ixl + ikfl2)- '  ] 

/ Ixl(Ixl+ ik/~,)- '  - I@1~1+ ik/~) -~ 
(A9) 

so that 

I 0  

K+ ( ~ ) [ K - , ( ~ ) ]  - --Ixl + ikfl2 

- Ix l + ikfll 
IKI + i k # :  

0 

° (A10) 
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Substituting (A10) into (A6) gives 

U~l(,)= ( -`g'+ ikfll ) 
IKl+ikB2 uYl(~), (All)  

u~(,) = (-,KI + ik,2) 
IXl + ikfl, u;,(~), (A12) 

u?2(,)= ( -Ixl+ ikfl' ) IKl+ik#2 u~2(~), (A13) 

( -,~, + ik,2) 
u2~(~)= [~¥7k-~ u;2(~). -oo <~< -k. (A14) 

Equations (All) and (A12) form a coupled system of Hilbert problems for U~l and u2v 
Similarly Eqns. (A13) and (A14) form a coupled system of Hilbert problems for u~2 and 
U22. 

Clearly if we can solve the coupled Hilbert problems 

( ikfl' -'~l )u~(,), (A15) 

-oo < ~ <  - k ,  

(ikfl2-'xl) 
u~-(~)= ikfll +lxl Ul(~ ), (m16) 

then we can solve Eqns. (All) to (A14). 

Solution of the Hilbert problems (A15) and (.416) 

We solve (A15) and (A16) by first uncoupling them. This is achieved by taking logarithms 
of (A15) and (A16) and then adding and subtracting the resulting equations. This gives the 
two uncoupled equations 

[log V(~)] - [ log V(~)] log ik/~l¥1KI ikB2¥1~l ' 

. fl.l__~ + k2/~? ] [log w(~)] ++ [log w(~)]- ~og[l~l=+k=/3 ~ . - ~  <~< -k; (m18) 

where 

V(~) = u~(~)u2(~), (A19) 

w(~) = u~(~)/u~(~). (A20) 
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By using the result [7%-+ a ]-+= +ilk + ~11/2 in the equation (A18), we can write (A17) 
and (A18) in the form 

[log V(~)] - [ l o g  V(~) ] -= log  IKl~ikfll IKl¥ikB2 ' 

- oo  < ~ <  - k ,  

logW(~)] +_ logW(~)]- . -i log[lXl2+k2fl? 
~ Ik + ~11/2 Ixl 2 + k2fl 2 

These are standard Hilbert problems whose solution is given (see [ l id  by 

v(a)--exp ~/f_oolog I,,l¥ikB1 I~1¥ik¢~2 ~-a  I 

W(a) = exp - 27r - ~ Ik + 11/2 log [xl2 + k2fl~ ~ - a  ' 

(A22) 

(A23) 

and 

W(a) = O(1) and V(ot) = O(1) as [a[-o ~ ,  [arg(k + a)[ < ~r; (A25) 

W(a)=O(1) and V ( a ) = O ( k + a )  -1) as a ~ - k ,  Re(f l l ,2)>0. (A26 ) 

Thus particular solutions of (A15) and (A16) are given, from (A19) and (A20) 

u, (~ )  = - [ v ( ~ ) ] ' / 2 [  w ( ~ ) ] ' / 2 ,  (A27) 

u 2 (a) = [ V(a)] 1/2[ W(a)] - ' /2,  (A28) 

where 

[ V(a)] 1/2 _- exp[ ½J(a)], (A29) 

t w(o ] + + 

J(ot) is given by the expression (B13) of Appendix B. The choice of sign, on taking the 

Obviously the exponents of V(a) and W(a), and consequently V(a) and W(a), are 
analytic in [arg(k + a)l < ~r; furthermore V(a) ~ 0 and W(a) ~ 0 in larg(k + a)[ < ~r. The 
expressions (A23) and (A24) can be reduced to simpler form by carrying out the 
integrations, see Appendix B. In particular it is shown there that 

(A24) 
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square roots, for ul(a ) and u2(a ) in (A27) to (A30) is justified as follows. With the signs 
given by (A27) to (A30) we have 

( 
/ I 

By means of Plemelj's formula [11, §17], (A23) gives 

v+... ,2) 
V-(~) -NI~ ikfl, IKI + ik~2 ' 

- o o  < ~ <  - k ,  

and from (A30) 

[W+(f;)W-(I~)]I/2 = [ (I k +  ~l + kBl( + ))(I k + ~1 + kB, ( - ) )  ] '/2 
[ (Ik + ~1 + kB:(+))(I k + ~l + kB2(-)) ] 

['2-k2+k2fl?]l/2 (([rl+ikfll)(lxl-ikfll)) 1/2, 
= -~ k2+k2fl 2] = (lxl+ikfl2)(lrl-ikB2) 

- o 0  < ~ <  - k .  

Hence 

- [ V+(~) I ikfll -IKI -1/2[W+(~)W-(~)] 1/2 ikfl2 +lKI ] 

and therefore 

u? ( ~ ) i k f l ~  -IKI 
u~ ( ~ ) ikfl2 + Irl '  

which is clearly consistent with (A15). 
It is emphasized that the above result for ul(a ) and u2(a ) is just a particular solution, 

and not the general solution. To obtain the general solution we must impose further 
conditions on the functions u~(a) and u2(a ) that we are interested in. First it is required 
that 

Ul(a)=O((k +a)8'), u: (a)=O((k  + a)'/2+8~), a s a - ,  - k ,  (A32) 

for some 81, 2 > - 1, in order to guarantee the convergence of the integrals (39) and (40), 
the singularity at t = - k  being integrable. Secondly, it is customary for the Hilbert 
problem to require that Ul(a ) and u2(a ) have finite degree at infinity, that is, ul(a ) and 
u2(a ) have polynomial growth as lal-o o0. 
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To determine the general solution for u1(0/) and u2(0/) under these conditions, sub- 
stitute 

Ul(0/) = -[V(0/)]l/2[W(0/)]1/2u~(0/), /42(0/)= [V(0/)]1/2[W(0/)]-l/2u~(0/), 

(A33) 

into the equations (A15) and (A16), leading to the vector Hilbert problem 

[ u ~ ( ~ ) ] + = [ . ~ ( ~ ) ]  -, [.~(~)]+=[ur(~)]-, - ~ < ~ < - / ,  

under the conditions 

u~(0/)=O((k +0/)8'+1/2), U~(Ol)"=O((k +0/)82+1), as 0/--) - k ,  

and u~(0/), u'~(0/) have finite degree at infinity. 
The Hilbert problem is uncoupled through addition and subtraction, viz. 

[u~(~)+u~(~)]+=[u~(.~)+u~(~)] -, - o ~ < ~ < - k ,  

u~(~)-u'~(~) += [u~(~)-u~(~) ]-, 
- m  <,~< - k .  

where the second equation was divided by [v/k-+ ~]-+= + ilk + ~[1/2. Thus the functions 
u'~(0/) + u'~(0/) and [u~(0/)- u'~(0/)]/vc-f:+ 0/ are continuous across the branch cut, hence 
by a well-known theorem [11, p. 36] these functions are analytic in the entire 0/-plane 
except possibly at 0/= - k. Such a possibility is ruled out by the requirement 81. 2 > - 1, 
which ensures that there can be no pole singularity at 0/= - k .  In conclusion, u'~(0/) + u'~(0/) 
and [u*(0/) - u'~(0/)]/kv~-+ 0/ are entire functions. The second requirement of u'~(0/), u'~(0/) 
having finite degree at infinity, combined with Liouville's theorem then yields 

u'~( 0/) + u'~( 0/) = 2P1(0/), ur(0/) - u~(0/) = 2P2(0/), 
Ck+ a 

u~(0/)=Pl(0/)+P2(0/)C'--l~+et, u~(0/)=Pl(0/)-P2(0/) kC'k+0/, (A34) 

where P1(0/), P2(0/) are arbitrary polynomials. Finally the general solution for u1(0/) and 
u2(0/) is given by (A33) and (A34)as 

u1(0/) = - Iv (0 / ) ]  1/2[ W(0/)] 1/2 { P1(0/) +/2(0/) kC'k~- }, (a35)  

U2(0/) = [ V(0/)] 1/2[ W(0/)] -1/2{ PI ( " )  - P2 (0/) k ~ / ~ -  ) - (A36) 
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Solution of the equations (All) to (,414) 

From the solutions (A35) and (A36) the matrix elements uij(a), which satisfy Eqns. (Al l )  
to (A14), are given by 

Ull (a) = - [ v(a)]  1/2[ w(a)]  1/~{ Pl1 (a) + ~21 ( a ) ~  }. 

.21(a) = [ v(a)]  1/2[ w(a)]  -1/2{ Pll(a) - P21 ( a ) ~  }, 

U12 (a )  ~-~ -- [ V( a)] 1/2[ W( a)] 1/2( P12 (a )  + P22 (a )  k ~ a  }, 

u22(a) = Iv(a)]  1/2[ w(a ) ] -1 / : {  PI: (a) - ~22(a) kiV~a ), 
where Pij(a)  (i,j = 1, 2) are as yet arbitrary polynomials. The matrix U(a) can be written 
more compactly as 

v ( a )  : V(°'(a)V(a),  

where 

U(°'(a) = [ - [V(a) l l /2 [W(a) ] I /2  

1 [ v(a)]  1/2[ w( a)] -1/2 

- [ v(a)]  ~/2[ w(a)]  1/2(~ + a),/2 / .  

- [ V ( a ) l l / 2 [ W ( a ) ] - l / 2 ( k  + a) 1/2 ] 
Finally we must ensure that U(a)  and L (a)  are non-singular in the cut a-plane. This puts 
some restrictions on the Pij. The exact restrictions are determined by looking at Det U(a) 
and Det L(a). Thus 

Det U = Det U (°) Det P = 2V(a)(k + a) 1/2 Det P,  

D e t L  = O e t K  -1 Det U =  2ix 2V(a)(k+.a) 1/2 D e t P .  
(~ + kB,)(~ + k~2) 

Therefore U and L will be non singular in the cut a-plane if Det P ¢ 0 for all a. Since 
Det P is a polynomial, one must have Det P = constant, i.e. a polynomial of zero degree. 
The matrix factorisation is not unique, and it is desirable that the polynomials Pij(a) have 
lowest possible degree, in order that the two sides of the split equations (42) and (43) also 
have lowest possible degree at infinity. Then the best choice for P(a) is 

1 " 

Thus we have chosen the factorisation 

Ull(a) = -- [V(a ) ] I / 2 [W(a ) ] I / 2 ,  

u21(a) = [ v(a)] l /2[  w(a ) ] - l /2 ,  

u12( a) = - [ V ( a ) l l / 2 [ W ( a ) l l / : ( k  + a) 1/2, 

U22(a ) = - - [ U ( a ) ] l / 2 [ W ( a ) ] - i / 2 ( k  + a) 1/2, 

(A37) 

(A38) 

(A39) 

(A40) 
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where [V(a)] 1/2 and [W(a)] 1/2 are given by (A29) and (A30). The corresponding matrix 
L ( a )  is obtained by substituting the above expressions (A37) to (A40) into 

t ( . )  = K - ' ( a ) V ( a )  

o r  

"2/, 
12, 122 1 x( r  + kill) -1 - x ( x  + kfl2) -1 ~u21 u22] 

giving 

l l l  = 

112 = 

/21 -~ 

/22 = 

i[ V(oO] 1/2[ W(a)]  1/2 i[ W(o/)] 1 /2 [  W(o/)] -1/2 

K + ki l l  t¢ + kfl2 
(A41) 

i[ V( a)] 1/2[ W( a)] '/2( k + a) ' /2 

I¢ + kil I 
+ i [ V ( a ) ] l / Z [ W ( a ) ] - ' / : ( k  + et)'/2, (A42) 

I¢ = k fl2 

- K [ V ( a ) ] ' / 2 [ W ( a ) ]  1/: K[V(a) l ' /E lW(a)]  -1/: 

x + kill I¢ + kfl: 
(A43) 

- ~ [ v ( . ) ]  1/=[ w(.)] '/:(~ + .)1/~ + ~ [ v ( . ) ]  1/:[ w ( . ) ]  -1/~(~ + . ) , / :  

(~+k~l) (~+~&) 

(A44) 

Asymptotic growth estimates 

From the expressions (A37) to (A44), and the results (B15), (B17) of Appendix B, we 
obtain the following growth estimates for large [a[, 

u n ( a  ) = 0 ( 1 ) ,  gl2(Ot) = 0(0/1/2),  
Ual(a) = O(1), Ua2(a) = O(a, /2) ,  (A45) 

Det U(a) = O(al/=), as la I --, oo in [arg(k + a)l < rr; 

I n ( a )  = O(a -1 ) '  l la(a) = O(°t-1/=)' (A46) 
12,(a) = O(1), 122(a) = O(a'/=),  

Det L(a )  = O(et-l/2), as lal ~ oo in larg(k + a) I < ¢r. In the situation when a ~ - k  



the expressions (A37) 
Appendix B give 

UlI(OI)~-- O((k.-~ol)-l/2), 
u~,(~) = o ( ( k  + ~ ) - " ) ,  

Det U ( a ) = O ( ( k  + a ) - ' / 2 ) ;  

l , , ( e t )=O( (k  +a) - ' / 2 ) ,  

12,(a ) = 0(1) ,  

Det L (a )  = O(1); 

as a ~ - k ,  Re B, > O, 

to (A44) in conjunction with the results (B18) and (B19) 
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of 

u,2(a ) = O(1), (A47) 

u22(a ) = O(1), 

l,~(~) = o 0 ) ,  
(A48) 

l~(~,) = o((k  + ~ ; ' ) ,  

Re f12 > O. 

Appendix B 

In this appendix we shall give explicit expressions for integrals which appear in Appendix 
A, namely 

I(~)=-~f~kl log I~1~ + k2/~? 
- [ + 01/2 Ixl 2 + kZf122 

and 

dt 
t - c t '  

1 r _ k  

where IKI = v /~  - k 2 for - oo < t < - k .  

Evaluation of I(a) 

I ( a )  can be written as 

I ( a )  = 2-~ fk ~ (log[ t 2 -  k2(1 - f12 )] _ log[ t 2 -  k2(1 - f12 )] }dt 

( t - k )'/2( t + ct) 

l f S { l o g [ t + k ( 1 - B ~ ) ' / 2 ] + l o g [ t - k ( 1 - B 2 , ) ~ / 2  ] =-2g 
dt 

(t )l/2(t k + Or) 

(m) 

(B2) 
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=2--~-- f0 °° (l°g[ t + kB,( + )1 + log[t + kB,(- )1 

dt 
- log[t + kB2( +)] - log[t + kB2 ( - ) ]  } tl/2( t + k + a) 

where B 1,2 ( --~ ) = 1 __ d - / ~ ? , 2  • 
We now use the result [12, form. 14.2(27)] 

f0 2= log(t + 8) dt = log(1/~ + v/~), 
tl/2(t+Y) ~ ' 

larg 3'1 < or, larg 81 < ¢r; 

giving 

larg(k + a)l < rr, Re B1 >0, Refl2 > 0. 

(B3) 

a s  

2(u+k)+2- -~ i£ood- t  log itcl -~ ikfll } ) t _ u j 

1 ] 
2(u + k) + Q~(u) du, (B8) 

Evaluation of J(a) 

J(a)  given by the expression (B2) can be written as 

f~(1-k [(]rl-ik~f1)(lrl-ikf12)] dt )du (B4) 
/(a)= 2-~£oo l°g IKl¥ikB1 IKI-~ikB2 (t_u) 2 

= Jl (a)  +J2(a),  (BS) 

where 

f (1 f ,  (Irl-ikfla) dtu ) du, (B6) Jl(,~) - ~ . _  log [r I+ikfll ( t - ) 2  

-glog ) (t_u)2 ] J2(a) = T~i g o~ (,KI- (B7) I~1 + ikfl2 

We shall now evaluate Jl(a). By carrying out an integration by parts, Jl(a) can be written 



where 

d(,o~( ,~,- /k~,))  
1 ,~ I~1 + ikfll 

O'(u)  = 2--~i Jk t+u dt 

_~:( , _ , ) a t  
21r i  I~1(1~1-ik[31) Ixl(Ixl+ik[3~) t+u 

= k[3, fk ~ tdt 
~r ~ /~-k  2 (t2-k2(1-fl?)}(t+ u) 

tdt 
=k[3'f t2~T~_k2(t_k l~_~?)(t+k l~_~)(t+u) " 

Expanding the integrand of the last expression into partial fractions gives 

k[3, fk~ ( 1 
Q, (u) = -~-~-- t - k ~ l  -[3? 

\ 
+ 1 t dt 
~+~ I~-B~ : (~+u)~- k 2 

k[3, f f  ( ) 1 1 1 

u+k 1V[-~-- ~ t -k~/ l - f l~  t+u 

1 , ))  
l+k~1_[3 2 t+u V/~_k2 

We now use the result 

dt cos- l (  8 / k  ) 

fk t ~ -  kZ (t + 8) x/k2 - 8 2 
larg(k + 8)1< cr, cos-'(o)=~-, 

in the expression (B9), giving 

Q,(u) = kB, cos-,(- ~-ff:~,~) 
~ k 2 - k 2 ( 1 - f l  2) 

cos-'(u/k) ) 
VI~_u2 

~ ( cos-,(~-~,~) 
+ :.(u_,. 1-~,~)~--- ~ - ~ )  

cos-'(u/k) ) 
k~l 2 

0 < Re cos-'(u/k) ~ ~r, R e ( ~  u 2 ) >/O, 

Re(fl,) > 0, larg(k + u)l < ~r. 
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(B9) 

(BIO) 
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In (B10) both the functions cos - l (u / k )  and kVr~ S- u 2 have branch cuts at - oo < u ~< - k  
and k ~< u < oo. The quotient c o s - l ( u / k ) / v ~  - u 2 is however continuous across k ~< u 
< oo, hence, this branch cut can be omitted. Then Ql(u) is indeed analytic in ]arg(k + u)l 
< ~r with a single branch cut - o 0  < u ~< - k .  We also note that Ql(U) is analytic at 
u = + k (1  - f12, since the singularities cancel. Substituting (B10) into (B8) gives 

- 1  
Jl(a)  = 2(u--~ k)  

~:~ (cos-,(- a-g~) cos-,<u/~) 
÷ :.(u÷~ 1-~-~) ~., ~ - u ,  

From the expressions (B6) and (B7) it can be seen that the corresponding result for J2(a) 
can be obtained from (Bl l )  by replacing the subscript 1 by 2. Thus 

J2(a)  = 2 ( u + k )  
.2 (cos-l/_ l cos_l ..) 

+ t cos-lt /cos-l uj,  )jdu. 
2.,,.(u-.,, 1 -~ : )  ~.~2 ~_u2  

(B12) 

Combining (Bl l )  and (B12) into (B5) gives 

~ Q (  )d y ( ~ ) =  u u, 

where 

Q(u) 
u + k  2¢r(u+ k 1-~---~12) 2 o r ( u -  k 1-~-~12) 

+ 
~ o s - l ( _ ~ )  ÷ cos-l(~_~-~:) 
2~(u + ~ ~-~-~) 2~(u- ~ ~ - ~ )  

1 _ k# l  c o s -  1 ( u / k )  u 
29 V/--~_ u2 + k~/1-  fl~ 

1) + 
u-  k ~  

kfl 2 cos -  1 ( u / k )  ( 1 

2,, ~/k2-u 2 lu+k(1-B~ 
1) 

~- u _ k  1_~--~2 • 
(B13) 



We note in particular that 

0t 1f1~ ° -2~1 /2 [  / ~ - - - - - ~  ; 1/2 +k¢1-~) Io,+k~/1-B~) 
V(a) = exp[ J ( a ) ]  = a + k 

× 
+k a-O-Z~? 

- f12 2 )/2 

kB, focos-'(u/k) 
X e x p - - ~ - j ~  V/~5_~_  

1 1 . + k 4 - B :  u-k~-Ci-z-~,~ du 

t 1 1 t ]  × e x p - ~  ~ - 7  u+~a-¢i=~ +u-~-d=~ ~ du 

= 0(1),  as lal ~ oo, Re(fl , ,2)  > 0, larg (k  + a) l  < 7r. 

Also that 

W(a)=exp[(k + a)'/zI(a)] 

( ~  + ~ ) (  ~ - ~  + ~ )  
( ~ +  ~ ) (  ~-~+ ~ )  

= 0 ( 1 )  as la l - - ,oo ,  Re(ill,2)>0, l a r g ( k + a ) l < ~ r .  

Fur thermore  as a --, - k ,  

W(a) = O(1) ,  Re(fl , ,2)  > 0, 

V(a)=O((k  +a)- ' ) ,  Re(fl , ,2)  > 0. 

The  result (B19) follows from (see [11, §16]) 

- -  [ log 
21ri J -oo [ \  Ixl-+ikfll It[-+ikfl2 t - a 

= - l o g ( k  + a )  + bounded  function, as a ~ - k .  
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(B16) 

(m7) 

(B18) 
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